
IJSER © 2017
http://www.ijser.org

Software Quality Assurance and Errors
Wasim Abbas

Abstract— despite the years of effort to ensure the quality of software, software companies still not able to release the software which is
completely error free. This paper is focused on the reasons of errors in the software, what kind of errors or bugs in the software, and how
can improve the quality of software by minimizing the errors. Software defects have a major impact on software development life cycle.
Finding and correcting errors activities are very expensive. It is not possible to avoid errors completely in the software, errors may be
inevitable but we can minimize their numbers and impact on our projects. To do this development teams need to implement a defect
management process that focuses on preventing defects, catching defects as early in the process as possible, and minimizing the impact
of defects.

Index Terms— Error, Failure, Impact, inevitable, Prevention,
Software Quality, Testing.

—————————— u ——————————

1 INTRODUCTION
uality is an important issue in software industry, - good
quality is necessary to
Condition of staying in the market – therefore most

software companies try to do some improvements in order to
deal with this challenge. Software bugs have a major impact
on the software quality. Software quality can be improved by
focusing on to reduce the errors of the software.
Software development cost is increasing day by day, Software
development companies are under more pressure than ever
before. These companies have immense pressure to get soft-
ware products to the marketplace quickly due to their compet-
itors, which pressures to reduce development schedules and
also create the pressure to cut costs to reduce development
cost of the software. And also software applications are more
complex now a day. All of these factors can make it difficult to
maintain code quality while managing costs. However, it is
always cost effective to minimize defects in the software as
early as possible because the cost of fixing defects increases
exponentially as software progresses through the develop-
ment lifecycle, that’s why it is important to catch defects as
early as possible. The cost of discovering defects after release
increases up to 30 times more than if errors are caught in the
design and architectural phase.
This paper will discuss the reason of the occurrence of the er-
rors, type o errors; this paper will also provide the approaches
and techniques to minimize the error and bugs.
Remaining of this paper is structured as:

Section 2: What is software quality?
Section 3: Types of errors which affect the quality
of software
Section 4: Classification of errors of coding
Section 5: Reasons of errors
Section 6: Approaches to minimize the errors.
Section 7: Conclusion.
Section 8: References:

Wasim Abbas is currently pursuing MS (CS) degree program in Department of
computer science, Virtual university of Pakistan,PH-0800-880-88, +92-42-111-
880-880,Student Id- MS140400134,wasimabbasjoyia@gmail.com

2 SOFTWARE QUALITY
It is hard to define the concept of software quality because it
is always difficult to find the adequate quality-criteria, attrib-
utes and proper quality-measuring methods and tools.
What does software quality really mean?”
Here are Garvin’s 5 quality definitions:

1. The transcendent definition says that quality is abso-
lute and universally recognizable, despite the fact that
it cannot be defined precisely. Only experience can
teach to recognize quality.

2. According to the user-based definition, quality is "fit-
ness for use". This definition starts from the assump-
tion that the individual customers have different
needs and those goods that best satisfy their needs are
considered to have the highest quality.

3. The product-based definition regards quality as a
precise and measurable variable, as an inherent char-
acteristic of goods.

4. Manufacturing-based definition identifies quality as
conformity with specifications. It focuses on the sup-
ply side.

5. Value-based definition defines quality in relation to
costs. A quality product provides Performance at an
acceptable price or conformance at an acceptable cost.

One way to measure the quality of the software product is
based on number of bugs or error in the software product. A
quality Software would have the minimum number of errors.
Remaining of this paper will discuss the errors and error
avoidance methods. [2].

3 WHAT IS ERROR?
An error is any flaw or imperfection in a software work
product or software process. The term error refers to a Defect,
fault or failure. The IEEE/Standard defines the following
terms as

Q

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518 1,013

IJSER

IJSER © 2017
http://www.ijser.org

3.1 Errors
Human actions that lead to incorrect result. An error can also
be defined as an issue or situation calling software change
request i.e. if something is broken or not properly built or
generated with a reason for not usable in certain cases, it can
be error.

3.2 Fault
Incorrect decision taken while understanding the given in-
formation to solve problems or in implementation of process.
A single error may lead to a single or several faults. Various
errors may lead to one fault.

3.3 Failure
It is inability of a function to meet the expected requirements.
All above definitions have a causal relationship with each
other. Thus an error can be referred to as defect or fault or
failure.

4 TYPES OF ERRORS
Following are the most common software errors. This topic
surely helps in finding more bugs more effectively. Also, you
can use this as a checklist while preparing test cases and
while performing testing.

4.1 User interface and procedure errors
Missing functions or incorrect functions that don’t fulfill the
user expectations, incomplete information, misleading and
confusing information, Wrong contents in help text, inappro-
priate error messages are not properly formed. Performance
issues like poor responsiveness can’t redirect output, inap-
propriate use of key board etc. [3]

4.2 Error Handling
Not fully provide protection against corrupted data, tests of
user input, version control; Ignores – overflow, data compari-
son, Error recovery – aborting errors, recovery from hard-
ware problems.

4.3 Loop Boundary related errors
 Most of the time during writing the loops programmers usu-
ally make mistakes like write wrong boundary conditions i.e.
wrong outcome or programmer’s assumptions about loop
terminations are wrong like infinitely running
loop.An infinite loop or endless loop is a sequence of instruc-
tions in a computer program which loops endlessly, either
due to the loop having no terminating condition, having one
that can never be met, or one that causes the loop to start
over [6].
4.4 Arithmetic and logical errors
Not good logic, bad arithmetic, outdated constants, calcula-

tion errors, and incorrect conversion from one data type to

another, wrong formula, incorrect approximation.

4.5 Initial and Later states
Not to set the data item to zero, incorrect initialization of
loop-control variable, incorrect initialization of a pointer, to
clear a string or flag, Incorrect initialization [3].

4.6 Control flow Errors
Returning state is not correct, Exception handling based exits,
Stack underflow/overflow, not able to block or un-block in-
terrupts, Comparison sometimes yields wrong result, Miss-
ing/wrong default, and Data Type errors [3].

4.7 Errors in Handling or Interpreting Data
 Un-terminated null strings, overwriting a file after an error
exit or user abort [3].

4.8 Synchronization error
Assumption that one event or task finished before another
begins, resource races, tasks starts before its prerequisites are
met, Messages cross or don't arrive in the order sent.

4.9 Load Conditions
 Required resources are not available, No available large
memory area, Low priority tasks not put off, Doesn’t erase
old files from mass storage, Doesn't return unused
memory.[3]

4.10 Hardware
Inappropriate hardware device, hardware Device unavaila-
ble, Underutilizing device intelligence, Misunderstood status
or return code, Wrong operation or instruction codes. [3]

4.11 Sources, Version and ID Control
No Title or version ID, Failure to update multiple copies of
data or program files. [3]

4.12 Testing Errors
Failure to notice/report a problem, Failure to use the most
promising test case, Corrupted data files, Misinterpreted
specifications or documentation, Failure to make it clear how
to reproduce the problem, Failure to check for unresolved
problems just before release, Failure to verify fixes, Failure to
provide summary report.

5 REASONS OF ERRORS
There are many reasons for software errors. In most cases
humans do mistakes in software design and coding.

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518 1,014

IJSER

IJSER © 2017
http://www.ijser.org

Once we know the causes for software defects it will be easier
for us to take corrective measures to minimize these defects.
5.1 Human Factor
Soft wares are developed by human. Humans do mistakes.
Human beings are not perfect. Then how can we expect per-
fect software product by hu-

man without any de-
fects in it? Hence there are errors in software. Yet, we have
not discovered any non human agent who would be able to
make software better than human. So we have to rely on the
human intelligence to develop software, so in his way we
cannot avoid errors. [5]
5.2 Overconfident People
Usually overconfident people prefer to say things like:
‘no problem’
‘piece of cake’
‘I can whip that out in a few hours’
‘it should be easy to update that old code’
instead of saying,
‘that adds a lot of complexity and we could end up making a
lot of mistakes’
‘we have no idea if we can do that; we’ll wing it’
‘I can’t estimate how long it will take, until I take a close look
at it’
‘we can’t figure out what that old spaghetti code did in the
first place’
If there are too many unrealistic ‘no problem’s’, the result is
software bugs.
This overconfidence can cause for errors in the software. [5]

5.3 Communication Failure
Miscommunication is another reason for defects in software.
Success of any software application depends on communica-
tion between customer, development and testing
teams. Unclear requirements and misinterpretation of re-
quirements are two major factors causing defects in software.
The communication failure can happen at requirement gath-
ering stage, requirement interpretation/documentation stage,
requirement-to-implementation translation stage etc. Mis-
communication or erroneous communication creates the situ-
ation where programmer has to deal with the problem which
is not completely understood by him. In this situation pro-

grammer would definitely make the mistakes in the software.
Another example of miscommunication is that when a pro-
grammer tries to modify code developed by another pro-
grammer, he would do the mistakes. [4][5]

5.4 Unrealistic Development Schedule
Due to competition software developing originations are in
great hurry to market their software products as soon as pos-
sible. This is the reason soft wares are developed under unre-
alistic release schedules, with limited/insufficient resources.
This situation will likely to introduce errors. [4][5]

5.5 Poor Design Logic
Software systems are very complex now-a-days, Lack of time
and an urge to complete it as quickly as possible may lead to
errors. Without proper understanding of the technical feasi-
bility before designing the architecture of the software would
invite errors. People don’t have time to think or brain storm-
ing.[4][5]
5.6 Poor Coding Practices
 Programmers can make mistakes like other human beings.
All developers are not domain experts. Programmers without
proper domain knowledge can make mistakes during coding.
Sometimes errors are occurred into the code due to simp-
ly bad coding techniques. Bad coding practices included no
use of exception handling or error handling, lack of proper
validations (data types, field ranges, boundary conditions,
memory overflows etc.) may lead to introduction of errors in
the code.

5.7 Poorly Documented Code
it is not easy to modify code that is badly written or poorly
documented. The result of this poorly documented code
is software errors. In many organizations management pro-
vides no incentive for programmers to document their code
or write clear, understandable code. In fact, it’s usually the
opposite; they get points for quick coding.
The new programmer starting to work on this code may get
confused due to complexity of the project and poorly docu-
mented code. Many times it takes longer to make small
changes in poorly documented code as there is huge learning
curve before making any code change.[4][5]
5.8 Changing Requirements
changes invites the errors, the customer may not understand
the effects of changes, or may understand and request them
anyway. Changes affects in the way like redesign, resched-
uling of engineers, effects on other projects, work already
completed that may have to be redone or thrown out etc. If
there are many minor changes or any major changes, known

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518 1,015

IJSER

IJSER © 2017
http://www.ijser.org

and unknown dependencies among parts of the project are
likely to interact and cause problems, and the complexity of
keeping track of changes may result in errors. Enthusiasm of
engineering staff may be affected. [5]

5.9 Use of Third-Party Tools
Third party software are used in the software development
rottenly, these third party tool can have bugs in them. These
tools could be tools that aid in the programming (e.g. class
libraries, shared DLLs, compilers, HTML editors, debuggers
etc.) .A bug in these tools may become the cause of bugs in
the software that is being developed by using these tools.
[4][5]

5.10 Poor Testing
Testing is very important in finding the errors but unfortu-
nately, there are some shortcomings in the testing process
like lack of seriousness for testing, lack of skilled tester, test-
ing activity conducted without much importance given to it
etc. due to poor testing errors are not fully eliminated in the
software.

6 APPROACHES TO MINIMIZE THE ERRORS.

The strategies to minimize the errors in the software products
are as follows.
6.1 Defect Prevention
 Analysis of the defects at early stages reduces the time cost
and the resources required. Techniques like defect injecting
methods enable the defect prevention. Defect preventive
techniques improve the quality of the software product. De-
fect prevention can be achieved with automation of the de-
velopment process. There is several tools available right from
the requirements phase to testing phase. Tools used at this
phase include requirement management tools, requirements
recorders tools, requirement verifier’s tools etc. the design
tools include database design tools, applications design tools,
visual modeling tools like Rational Rose and so on.[1]
6.2 Train and Educate the Programmer
Human is biggest source of the errors by providing them
training these error can be avoided. Train the people and ed-
ucate them in product and domain specific knowledge is a
preventive approach to minimize the errors in the software
product. Developers should improve the development pro-
cess knowledge and expertise in software development
methodology.
6.3 Defect Identification

There are several approaches to identify the defects like in-
spections, prototypes, testing and correctness proofs.

6.3.1 Formal Inspection
 It is the most effective and expensive quality assurance tech-
nique for identifying defects at the early stages of the devel-
opment? Through prototyping several requirements are
clearly understood which helps in overcoming the defects.

6.3.2 Testing
It is one of the least effective techniques? Those of the defects,
which could have escaped by identification at the early stag-
es, can be detected at the time of testing. Testing phase can be
automated by the use of tools like code generation tools, code
testing tools, code coverage analyzer tools. Several tools like
defect tracking tools, configuration management tools and
the test procedures generation tools can be used in all phases
of development
Correctness proofs are also a good means of detecting errors
especially at the coding level. [1]

6.4 Categorize The Errors
After identification of errors first, categorized causes, de-
fects, defect type, defect severity and defect priority in fol-
lowing category: Cause category: -Coding/Logic -
Inconsistent with requirements -Inadequate Error Handling -
Test Coverage -DB Issue -Network Issue
-Software Issue -Hardware issue Type: -Cosmetic/UI -
Functional Error Severity 1 – Critical 2 – High 3 – Medium 4 –
Low Priority 1 – Critical 2 – High 3 – Medium 4 – Low Using
this categorization, weights can be assigned and each organi-
zation can use this weight to prioritize the defects. Once we
know the propriety of defects, preventive measures like train-
ing and education of programmer, mentoring, per reviews
can be taken to prevent the defects. [1]

6.5 Reuse Of Tested Code
Errors and bugs can also be reduced by reusing the code
which is already tested and proved to be error free. However,
reusing code is not always a good approach, particularly
when business logic is involved. Reuse in this case may cause
serious business process bugs

 6.6 Avoid Legacy problems
Before reusing old code, libraries, APIs, configurations etc. it
must be considered if the old work is valid for reuse, or if it is
likely to be prone to legacy problems.
Legacy problems are problems which inherent when old de-
signs are expected to work with today's requirements, espe-
cially when the old designs were not developed or tested

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518 1,016

IJSER

IJSER © 2017
http://www.ijser.org

with those requirements in mind like 32 bit architecture
based source code would not work with 64 bit architecture.
7 CONCLUSION
The overall goal of my paper is to discuss the errors due to
which software quality suffers. What kind of error is com-
mon in software products? This paper also covered the rea-
sons of the occurrence of the errors in the software products
and paper also provided the identification method of errors
and preventive measures of identified error so that these er-
rors would be avoided in the software products to ensure the
quality of the software product.

8 REFERENCES

[1] “On Minimizing Software Defects during New Product Development Using
Enhanced Preventive Approach” Khaleel Ahmad, Nitasha Varshney.

[2] Product Quality by Dr. GARVIN (1984).

[3] Padmini C (Author of Beginners guide to Software Testing).

[4] Softwaretestingtricks.com/2008/12/why-are-bugsdefects-in-software.html.

[5] Softwaretestinghelp.com/why-does-software-have-bugs.
[6] Softwareengineering.stackexchange.com

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518 1,017

IJSER

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017
ISSN 2229-5

IJSER © 2017
http://www.ijser.org

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518 1,018

IJSER

